在人類所利用的能源當中,電能是最清潔最方便的;電氣傳動無疑有著很大的意義,隨著電力電子技術、計算機技術以及自動控制技術的迅速發(fā)展,電氣傳動技術也得到了長足的發(fā)展。本文在對大量國內外文獻分析的基礎上,總結和論述了我國在電力電子和電力傳動系統(tǒng)領域的研究現(xiàn)狀。
從學術的角度來看,電力電子技術的主要任務是研究電力電子器件(功率半導體)設備,轉換器拓撲結構,控制和電力電子應用,實現(xiàn)電力和磁場的能量轉換、控制、傳輸和存儲,以便實現(xiàn)合理和有效使用的各種形式的能源,高品質的人力的電力和磁場的能量。
1 電力電子的研究方向
就目前情況而言,我國電力電子的研究范圍與研究內容主要包括:1)電力電子元器件及功率集成電路;2)電力電子變換器技術的研究主要包括新的或電力能源的節(jié)約和新能源電力電子,軍事和空間應用等作為特殊的電力電子轉換器技術的智能電力電子變換器技術,控制電力電子系統(tǒng)和計算機仿真建模;3)電力電子技術的應用,其研究內容包括超高功率轉換器,在能源效率,可再生能源發(fā)電,鋼鐵,冶金,電力,電力牽引,船舶推進應用,電力電子系統(tǒng)的信息化和網絡;電力電子系統(tǒng)的故障分析和可靠性;復雜的電力電子系統(tǒng)的穩(wěn)定性和適應性;4)電力電子系統(tǒng)集成,其研究內容包括標準化電力電子模塊;單芯片和多芯片系統(tǒng)設計,集成電力電子系統(tǒng)的穩(wěn)定性和可靠性。
2 我國電力電子發(fā)展中存在的問題
當前的主要問題是:中國的電力電子產品和設備目前生產的大部分是也主要是晶閘管,雖然它可以創(chuàng)造一些高科技電子產品和電氣設備,但他們都使用電力電子外國生產設備和多組分組裝集成的制造方法,尤其是先進的全控型電力電子器件全部依賴進口,而許多關系到國民經濟和國家安全,在一些關鍵領域的核心技術,軟件,硬件和關鍵設備,我國的外資控制和封鎖。特別是在關系國民經濟和國家安全,更多先進水平的核心技術差距的關鍵領域,這種情況正在迅速變化的挑戰(zhàn)和我們的道德律令。
在過去,雖然我國國民經濟的各個部門,先后引進了國外先進技術,已開始注意到國內突出的問題,從表面上看,雖然對引進技術的絕大多數(shù)可以在幾年后達到國產化率70%的要求,但只要仔細分析,不難發(fā)現(xiàn),并最終拒絕外國公司轉讓技術和關鍵部件,都涉及到高科技的電力電子技術和動力傳動產品在核心技術。
目前國外和問題的主要區(qū)別是:電力電子器件的全面控制,不能制造國內制造的高功率轉換器,低技術,設備可靠性差,電力電子數(shù)字控制技術水平仍處于初級階段;應用程序的控制技術和系統(tǒng)控制軟件的水平較低;缺乏經驗的重大項目等。高性能高功率轉換器設備幾乎全部從國外進口。
3 電力傳動系統(tǒng)的發(fā)展現(xiàn)狀分析
目前我國電力傳動系統(tǒng)的研究主要圍繞交流轉動系統(tǒng)展開,隨著交流電動機調速理論的突破和調速裝置(主要是變頻器)性能的完善,電動機的調速從直流發(fā)電機-電動機組調速、晶閘管可控整流器,直流調壓調速逐步發(fā)展到交流電動機變頻調速。交流傳動系統(tǒng)之所以發(fā)展得如此迅速,和一些關鍵性技術的突破性進展有關。它們是功率半導體器件(包括半控型和全控型)的制造技術、基于電力電子電路的電力變換技術、交流電動機控制技術以及微型計算機和大規(guī)模集成電路為基礎的全數(shù)字化控制技術。為了進一步提高交流傳動系統(tǒng)的性能,國內有關研究工作正圍繞以下幾個方面展開:
1)輸入電流為正弦和四象限運行開辟了新的途徑
高性能交流驅動系統(tǒng)電壓型PWM逆變器中的應用日益廣泛,PWM技術的研究更深入。 PWM功率半導體器件采用高頻開啟和關閉,成為一個在一定寬度的電壓脈沖序列法律的變化,為了實現(xiàn)頻率,變壓器,有效地控制和消除諧波的直流電壓。 PWM技術可分為三類:正弦PWM,優(yōu)化PWM及隨機PWM。正弦PWM的電壓,電流和磁通正弦PWM計劃的目標包括。正弦PWM普遍提高功率器件的開關頻率將是一個非常出色的表現(xiàn),在中小功率交流驅動系統(tǒng)等被廣泛使用。但為大容量的電源轉換設備,高開關頻率將導致大的開關損失,以及高功率設備,如GTO的開關頻率仍不做的非常高的在這種情況下,在最佳的PWM技術只是滿足的需求該設備。
2)應用矢量控制技術、直接轉矩控制技術及現(xiàn)代控制理論
交流電機交流驅動系統(tǒng)是一個多變量、非線性、強耦合、時變控制對象,變頻調速控制,電機控制的穩(wěn)定狀態(tài)方程的研究動態(tài)控制非常令人滿意的結果的特點。 70年代初提出研究交流電機的控制過程的動態(tài),不僅要控制每個變量的振幅,而控制的階段,為了實現(xiàn)交流電機磁通和轉矩的解耦矢量變換方法,促使高性能交流驅動系統(tǒng)逐漸向實際使用。高動態(tài)性能的電流矢量控制變頻器已成功應用于軋機主傳動,電力牽引系統(tǒng)和數(shù)控機床。此外,為了解決系統(tǒng)的復雜性和控制精度之間的矛盾,但也提出一個新的控制方法,如直接轉矩控制,方向控制電壓,特別是與微處理器控制技術,現(xiàn)代控制理論在各種控制方法也得到了應用,如二次型性能指標最優(yōu)控制和雙位模擬調節(jié)器控制,可以提高系統(tǒng)的動態(tài)性能,滑(滑模)變結構控制可以提高系統(tǒng)的魯棒性,狀態(tài)觀測器和卡爾曼濾波器可以得到狀態(tài)信息不能測量,自適應控制能夠全面提高系統(tǒng)的性能。此外,智能控制技術,如模糊控制,神經網絡控制,也開始在交流變頻調速驅動系統(tǒng)用于提高控制精度和魯棒性。
3)廣泛應用微電子技術
隨著微電子技術的發(fā)展,數(shù)字式控制處理芯片的運算能力和可靠性得到很大提高,這使得全數(shù)字化控制系統(tǒng)取代以前的模擬器件控制系統(tǒng)成為可能。目前適于交流傳動系統(tǒng)的微處理器有單片機、數(shù)字信號處理器(Digital Signal Processor——DSP)、專用集成電路(Application Specific Integrated Circuit——ASIC)等。其中,高性能的計算機結構形式采用超高速緩沖儲存器、多總線結構、流水線結構和多處理器結構等。核心控制算法的實時完成、功率器件驅動信號的產生以及系統(tǒng)的監(jiān)控、保護功能都可以通過微處理器實現(xiàn),為交流傳動系統(tǒng)的控制提供很大的靈活性,且控制器的硬件電路標準化程度高,成本低,使得微處理器組成的全數(shù)字化控制系統(tǒng)達到了較高的性能價格比。
4 結論
雖然我國電力電子與電力系統(tǒng)傳動系統(tǒng)技術得到了長足的發(fā)展,但與發(fā)達國家相比仍然存在較大差距,許多關鍵技術有待突破,關鍵部件還長期依賴進口的局面還沒有打破。